Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver.
نویسندگان
چکیده
We reported previously that a substantial fraction of the acetyl groups used to synthesize malonyl-CoA in rat heart is derived from peroxisomal beta-oxidation of long-chain and very-long-chain fatty acids. This conclusion was based on the interpretation of the 13C-labelling ratio (malonyl-CoA)/(acetyl moiety of citrate) measured in the presence of substrates that label acetyl-CoA in mitochondria only (ratio < 1.0) or in both mitochondria and peroxisomes (ratio > 1.0). The goals of the present study were to test, in rat livers perfused with [1-(13C)]octanoate or [3-(13C)]octanoate, (i) whether peroxisomal beta-oxidation contributes acetyl groups for malonyl-CoA synthesis, and (ii) the degree of labelling homogeneity of acetyl-CoA proxies (acetyl moiety of citrate, acetate, beta-hydroxybutyrate, malonyl-CoA and acetylcarnitine). Our data show that (i) octanoate undergoes two cycles of peroxisomal beta-oxidation in liver, (ii) acetyl groups formed in peroxisomes contribute to malonyl-CoA synthesis, (iii) the labelling of acetyl-CoA proxies is markedly heterogeneous, and (iv) the labelling of C1+2 of beta-hydroxybutyrate does not reflect the labelling of acetyl-CoA used in the citric acid cycle.
منابع مشابه
Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate.
We previously showed that a fraction of the acetyls used to synthesize malonyl-CoA in rat heart derives from partial peroxisomal oxidation of very long and long-chain fatty acids. The 13C labeling ratio (malonyl-CoA)/(acetyl moiety of citrate) was >1.0 with 13C-fatty acids, which yields [13C]acetyl-CoA in both mitochondria and peroxisomes and < 1.0 with substrates, which yields [13C]acetyl-CoA ...
متن کاملOctanoate oxidation measured by C-NMR spectroscopy in rat skeletal muscle, heart, and liver
Walton, Marlei E., Douglas Ebert, and Ronald G. Haller. Octanoate oxidation measured by 13C-NMR spectroscopy in rat skeletal muscle, heart, and liver. J Appl Physiol 95: 1908–1916, 2003. First published July 25, 2003; 10.1152/japplphysiol.00909.2002.—Contribution of octanoate to the oxidative metabolism of the major sites of fatty acid oxidation (heart, liver, and resting and contracting skelet...
متن کاملOctanoate oxidation measured by 13C-NMR spectroscopy in rat skeletal muscle, heart, and liver.
Contribution of octanoate to the oxidative metabolism of the major sites of fatty acid oxidation (heart, liver, and resting and contracting skeletal muscle) was assessed in the intact rat with 13C-NMR spectroscopy. Under inhalation anesthesia, [2,4,6,8-13C4]octanoate was infused into the jugular vein and the sciatic nerve of one limb was stimulated for 1 h. Octanoate was a principal contributor...
متن کاملProbing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C labeling of citrate released by perfused rat hearts.
We present a strategy for simultaneous assessment of the relative contributions of anaplerotic pyruvate carboxylation, pyruvate decarboxylation, and fatty acid oxidation to citrate formation in the perfused rat heart. This requires perfusing with a mix of 13C-substrates and determining the 13C labeling pattern of a single metabolite, citrate, by gas chromatography-mass spectrometry. The mass is...
متن کاملA 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts.
Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 389 Pt 2 شماره
صفحات -
تاریخ انتشار 2005